Range Stack Technologies (no costs, mostly questions)

David E. Jaffe

21 August 2009

E949 range stack

- ▶ 24 azimuthal sectors. 19 radial layers.
- Layer 1: 0.64cm thick, 52 cm long, 17 1-mm WLS fibers(Bicron multiclad BCF-92), Hamamatsu R1398 PMT on each end
- ► Layers 2-18(19): 1.9(1.0)cm thick, 182 cm long, lucite light guides, EMI 9954KB PMT on each end
- Each PMT: Passive split 1:2:2 for ADCs:discriminator: fan-in.
 Discriminator to TDC and trigger. 4 neighboring sectors fanned-in to single 500 MHz waveform digitizer.
- ➤ ~10 PE/MeV
- straw chambers (RSSC) outside layers 10 and 14.

RS Technologies

E949 range stack(2)

Uses of range stack:

- 1. Measure track range and energy
- 2. dE/dx provides π/μ discrimination
- 3. $\pi \to \mu \to e$ detection in stopping counter
- 4. Photon veto
- Trigger

Desired range stack improvements

- 1. WFD, ADC and multi-hit TDC for each PMT: Reduce effect of accidentals on π/μ discrimination
- 2. Increased light yield: Improve energy resolution, photon veto capability and π/μ discrimination
 - Improved coupling to photon detector
 - Photon detector with higher QE
- 3. Increased segmentation: Lowers accidental losses
 - Radial:
 - 3.1 Improve discrimination between min.ion. track and 3 MeV μ^+ from stopped π^+
 - 3.2 Improve range resolution
 - Azimuthal:
 - 3.1 Improve position resolution (no RSSCs)
 - 3.2 Improve e^+ detection

Issues with increased segmentation

- 1. Mechanical feasibility
- 2. Cost: Requires more photon detectors
- 3. Increases inactive material in range stack
- 4. Increases probability that μ^+ escapes stopping counter

In E949, counters in 4 layers were packaged with 1 mil Al between layers and wrapped in 1 mil Al.

First try at improving RS

Consider Minerva-style, extruded scintillator with single WLS fiber:

Total of 60,128 m, co-extruded plastic.

6 / 6

V.Rykalin, CALOR 2006 presentation

Minerva-style scintillator

Pros:

- 1. Factory at FNAL
- 2. Reliable, robust extrusion technique

Cons:

- 1. Estimated light yield ~ 9 PE/MeV (based on Minerva TDR), not a significant improvement over E949
- 2. Co-extrusion of very thin coating ($\sim 25\mu$) not feasible ($> 130\mu$ for Minerva) based on e-mail exchange with Anna Pla-Dalmau.
- 3. Transverse dimensions of extrusion changes with die wear.
- 4. Variation of light collection efficiency with track position (± 10 from Minerva simulation)

 David E. Jaffe (BNL)
 RS Technologies
 090821
 7 / 6